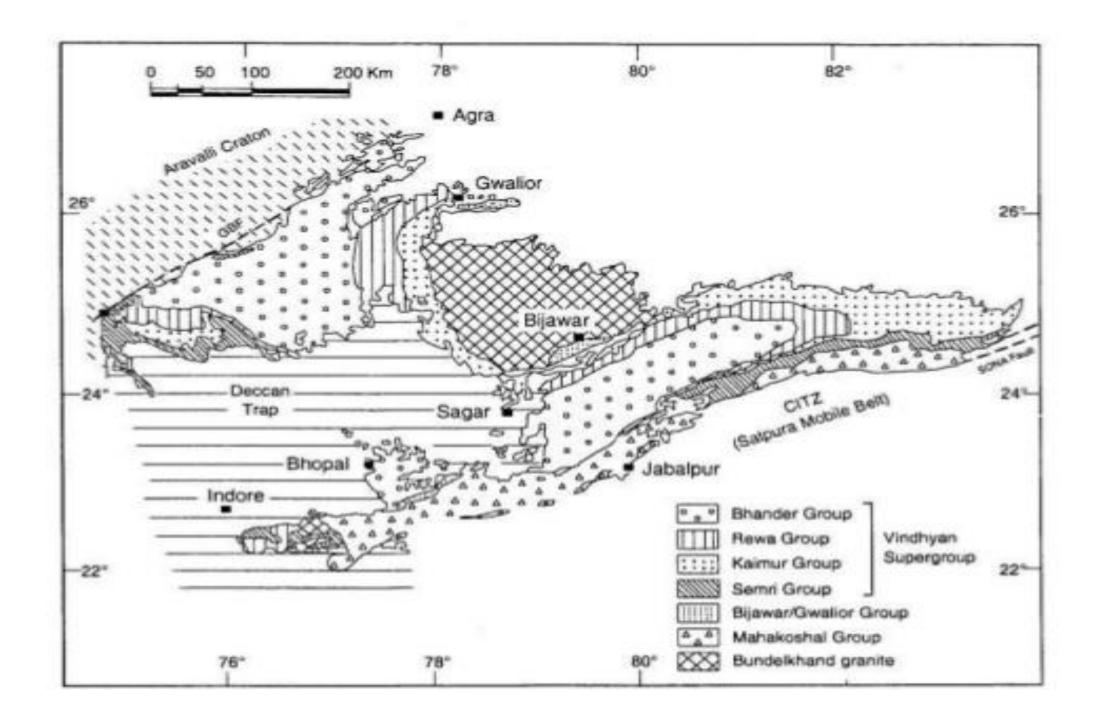
Jiwaji University school of studies in earth science

For M.sc geology IInd semester

Paper GT203 – UNIT 4 – topic 4.2(Vindhyan Supergroup)


By Varnica mishra

<u>Content</u>

- Introduction
- Geological details
- Economic importance
- Conclusion

Introduction

- Vindhyan supergroup is named after the Vindhyan mountain in central India .
- Covers an exposed area of 60,000 sq.km and a concealed area of 1,62,0000 sq.km under the Indo Gangetic Alluvium and deccan trap
- The strata are exposed in Son valley, Bundelkhand and Rajasthan.
- The Son- Narmada fault bound the basin in the south and the great boundary fault in the northwest
- Geographically, it starts from sasaram in the east and to Dholpur in the north.
- It belongs to mesoproterozoic.

Group	Formation	Alternative Names
Bhander Group (1300-1500 m)	Maihar Sandstone	(Upper Bhander Sst.: Divided into Bhavpura Sh., Balwan Lst. Shikaoda Sst.)
	Sirbu Shale	Construction Sciences
	Bundi Hill Sandstone	(Lower Bhander Sst.)
	Lakheri Limestone	(Bhander Lst., Nagod Lst.)
	Ganurgarh Shale	(Simrawal Sh.)
********	Disconformity/ Grada	ational Contact
Rewa Group (100-300 m)	Govindgarh Sandstone Drummondganj Sandstone	(Upper Rewa Sst., Gahadra Sst.)
	Jhiri Shale	(Variegated Sh.)
	Asan Sandstone Panna Shale	(Lower Rewa Sst., Itwa Sst., Kanar Sst.)
********	Normal Contact / Fe	icles Change
Kaimur Group (400 m)	Dhandraul Quartzite Mangesar Formation	(Upper Kaimur Sst., Searp Sst.)
	Bijaigarh Shale	
	Markundi Sandstone	(Ghaghar Sst.)
	Ghurma Shale	(Susnai Breccia)
	Sasaram Sandstone	(Lower Kaimur Sst.)
	Unconformity / No	rmal Contact
Semri Group (3000-4000 m)	Suket Shale	(Baghwar Sh.)
	Rohtas Limestone	(Nimbahera Lst.: Divided into Bari Sh., Jiran Sst. and Khori Malan Cong.)
	Chorhat Sandstone	(Glauconite Bed, Rampur Sst., Basuhari Sst., Tirohan Breccia)
	Bargawan Limestone	(Salkhan Lst., Fawn Lst., Chorhat Lst., Tiroban Lst.)
	Kheinjua Shale	(Olive Sh., Koldaha Sh., Binota Sh.)
	Chopan Porcellanite	(Deonar Porc.)
	Kajrahat Limestone	(Kuteshwar Lst., Bhagwanpura Lst., Tirohan Lst., Lohar Dol.)
	Arangi Shale	
	Deoland Sandstone	(Khardeola Sst., Pandwafall Sst.)

Geological details

- Vindhyan supergroup is subdivided into two groups- Upper vindhyan and lower vindhyan, composed of sandstone, shale and carbonate, few conglomerate and volcanoclastic bed.
- Lower vindhyan is 1300- 1100 M.y, marine in origin consisting of calcaerous and argillaceous sediments.
- Upper vindhyan is 1000-600 M.y, fluviatile origin and exclusively arenaceous.
- Upper vindhyan enclose two diamond bearing horizon, from which panna and Golconda diamonds have been mined.
- The upper and lower vindhyan supergroup are separated by unconformity, prominent in the North but almost disappers in the southern areas.

Lower Vindhyan SEMRI SERIES

- 3000 to 4000m thickness
- Derived its name from Semri river well developed in the eastern Son valley.
- It rests with non- conformity on bundelkhand .
- Irregular thickness indicate irregular basin floor
- It is made up of five alternating formations of shale and carbonates with areas of sandstones and volcanic clastic units.
- basal succession consist of conglomerate , cross bed ferruginous sandstone and shale.

Upper Vindhyan

KAIMUR SERIES

- Separated by an unconformity from lower vindhyan
- 400 m thickness
- named after kaimur scrap.
- It is essential made up of sandstone- shale.
- Ripple marks and sun cracks are found on the shales
- In Bundelkhand it shows a basal conglomerate containing jasper
- Using Rb-Sr isochron the age 1100-1150 Ma.

REWA GROUP

- Named after the Rewa state, thickness-100-300m.
- Sediments thickness to the north indicating deepening of the basin.
- Separated from kaimur by a zone of diamond bearing conglomerate .
- Consist of a series of shales and sandstone formations that, in areas contain kimberlite derived diamondiferous conglomerate.
- The presence of mud crack suggest periodical exposures and the presence of rain prints in the shale indicates the sub aerial conditons.
- The basal panna shale without any basal conglomerate indicates continuity of depositon from kaimur group.

Bhander group

- Named after bhander upland, extensively developed along the axis of the basin and in the Bhopal inlier within the Deccan trap.
- Thickness 1300-1500m
- Separated from the Rewa group by a horizon diamond bearing conglomerate.
- Bhander sandstone are fine grained and soft.
- the Ganurgarh shale with stromatolitic limestone indicates shoreline lagoon-tidal flat complex.
- The top unit of maihar sandstone unit is a blanket deposit with ripple marks, cross bedding and load cast indicating tidal flat to near shore littoral environment.

Economic Importance

- Diamond, pyrite, coal, limestone.
- Diamond have been reported in the conglomerate in the panna
- The limestone of Vindhyans are among the most important sources of raw material for the lime and cement industry in India.
- Vindhyan sandstone near U.P on disintegrating by weathering yield good sands which are being used for the manufacture of glass.
- Pyrite is reported from the Bijaigarh shales of lower Kaimur. The material is of good quality , containing around 45% sulphur, without any arsenic.